目的传统的飞机目标识别算法一般是通过目标分割,然后提取不变特征进行训练来完成目标的识别。但是,对于实际情况比较复杂的遥感图像飞机目标,至今没有一种适合多种机型的分割识别算法。针对现有识别算法的不足,提出一种基于特征点空间分布、颜色不变矩和Zernike不变矩相结合的遥感图像飞机目标识别算法。方法首先,对预处理后的遥感图像和模板图像进行小波变换,在低分辨率图像下采用圆投影特征进行粗匹配,确定候选目标;粗匹配结束后,提取高分辨率图像的多尺度Hartis-Laplace角点,并画出Delaunay三角网,同时提取出颜色不变矩和Zernike不变矩;然后使用欧氏距离作为这3种特征的相似性度量,并和样本