基于LSA和SVM的火灾烟雾检测算法
为了解决视频烟雾检测中特征提取难度较大、复杂度较高的问题,提出一种基于潜在语义(Latent Semantic Analysis,LSA)特征和支持向量机(Support Vector Machine,SVM)的烟雾检测算法。该算法首先将烟雾图像库中的每幅图像进行有重叠分块,提取每个分块的小波纹理与HSV颜色特征;再对所有分块特征进行聚类,量化成"视觉字",并且根据每个"视觉字"在每幅烟雾图像中出现的频率,建立"词-文档"矩阵;然后,采用LSA的方法获得每幅烟雾图像的潜在语义特征;最后,结合SVM,实现视频烟雾检测。对比实验表明,该算法特征提取简便,可以更快检测烟雾的发生,提高了烟雾检测效率。
暂无评论