基于语音的性别识别:使用梅尔频率倒谱系数(MFCC)和高斯混合模型(GMM)的基于语音的性别识别 源码
基于语音的性别识别 基于语音的性别识别,使用: 免费的ST美国英语语料库数据集(SLR45) 梅尔频率倒谱系数(MFCC) 高斯混合模型(GMM) 数据集 可以在上找到免费的ST美国英语语料库数据集(SLR45) 。 它是提供的免费的美国英语语料库,其中包含10位说话者(5位女性和5位男性)的讲话。 每个说话者大约有350种话语。 理论 语音特征提取 此处使用梅尔频率倒谱系数(MFCC),因为它们可在说话者验证中提供最佳结果。 MFCC通常如下得出: 进行信号(窗口摘要)的傅立叶变换。 使用三角形重叠窗口,将以上获得的光谱的功率映射到mel刻度上。 记录每个梅尔频率下的功率对数。
文件列表
Voice-based-gender-recognition-master.zip
(预估有个28文件)
Voice-based-gender-recognition-master
hmmCode
FeaturesExtractor.py
2KB
DataManager.py
3KB
GenderIdentifier.py
5KB
ModelsTrainer.py
5KB
Run.py
635B
requirements.txt
76B
.travis.yml
386B
LICENSE
1KB
暂无评论