为了探讨基于舌诊的疾病快速筛查,运用可见和近红外光谱仪,采集149名志愿者舌尖的反射光谱并且进行反射率归一化处理。根据临床诊断结果将样本分为4组:健康组、高粘血症倾向组、脂肪肝患者组和冠心病患者组。运用主成分分析(PCA)结合人工神经网络(ANN)方法、偏最小二乘(PLS)方法和间隔偏最小二乘(iPLS)方法3种方法建立分类预测模型。预测准确率分别为75%,75%和85%。实验结果表明,在3种建模方法中,iPLS预测效果最好,与可见光波段相比,近红外波段含有更多与疾病分类相关的光谱信息。实验的结果表明,光谱法用于某些疾病的快速诊断具有较高的可行性。