暂无评论
鉴于传统在线最小二乘支持向量机在解决时变对象的回归问题时, 模型跟踪精度不高, 支持向量不够稀疏, 结合迭代策略和约简技术, 提出一种在线自适应迭代约简最小二乘支持向量机. 该方法考虑新增样本与历史数
分析了遥感月蒸发蒸腾量数据的动态变化趋势,把一维遥感月蒸发蒸腾量输入空间映射到高维输入空间,将蒸发蒸腾量时间序列重构为12维相空间,建立了基于支持向量机的蒸发蒸腾量预测模型。根据预测精度,确定了损失系
针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LS-SVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM
通过分析经典的Q(λ)学习算法所存在的经验利用率低、收敛速度慢的问题,根据当前和多步的经验知识样本建立了状态-动作对值函数的最小二乘逼近模型,推导了该逼近函数在一组基底上的权向量所满足的一组线性方程,
基于智能遗传算法与复合最小二乘支持向量机的长江水质预测与评价
提出了多核最小二乘支持向量机的永磁同步电机混沌系统建模方法。通过不同核函数的线性加权组合构造新的等价核,降低建模精度对核函数及其参数选择的依赖性。理论上给出多核最小二乘支持向量机回归参数和模型输出值的
如何用MATLAB实现LS-SVM
为了提高系统可靠性的精确快速分配,采用支持向量机对系统可靠性进行建模,采用逆向思维对系统可靠性进行分配;为了提高求解速度和鲁棒性,用最小二乘法对支持向量机进行算法优化,并用遗传算法对最小二乘支持向量机
为提高导引头故障诊断准确率,提出了一种采用改进遗传算法优化的最小二乘支持向量机(LSSVM)构造导引头多故障分类模型的方法。该方法基于一对一策略及改进的投票法建立两层LSSVM多故障分类器,并利用一种
加权深度最小二乘的稳健加权最小二乘
暂无评论