以基于实测的电力系统综合负荷建模为应用对象,探讨遗传算法的运行机理,分析遗传算子的不同搜索能力。指出决定遗传算法性能的关键因素是种群多样性,得出了种群多样性与算法参数的关联约束。从理论分析上给出遗传参数的设定规则,深入研究遗传算法中种群规模、交叉、变异概率及其控制策略,以及初始种群参数区间等遗传算法关键操作参数对算法性能的影响规律,给出合理的种群规模和参数初始区间,提出与群体进化程度指标相关的自适应调整交叉概率和变异概率策略。研究结果表明,合理的参数组合是挖掘遗传算法潜能的关键,可提高遗传算法运行效率、克服早熟及尽量减小模型参数分散性。