机器学习使得计算机具备了自主学习和模式识别的能力,而数理统计知识与机器学习的有效结合,使其成为一个更加有力的工具,广泛用于基础科学和工程领域中的各类数据分析和挖掘任务。   本书对机器学习的关键知识点进行了全面讲解,帮助读者顺利完成从理论到实践的过渡。书中首先介绍用于描述机器学习算法的统计与概率的知识,接着详细分析机器学习技术的两类主要方法——生成方法和判别方法,最后深入研究了如何使机器学习算法在实际应用中发挥更大的作用。 杉山将(Masashi Sugiyama)东京大学教授,拥有东京工业大学计算机科学博士学位,研究兴趣包括机器学习与数据挖掘的理论、算法和应用,涉及信号处理、图像处理、机器人