基于人工免疫核聚类的支持向量数据描述方法
摘要:为使支持向量数据描述(SVDD)能应用于无监督多分类情况,提出了一种基于人工免疫核聚类的支持向量数据描述(AIKCSVDD)方法。AIKCSVDD将人工免疫核聚类产生的记忆抗体作为目标数据点,使用SVDD方法进行多类学习。在AIKCSVDD中,一方面实现了用核聚类方法解决各类数据边界不清晰的长处与免疫网络聚类方法全局收敛、不需要先验知识的优点的有机结合;另一方面,由于用记忆抗体代替原始数据进行学习,从而更好展现了原始数据的全局分布特征。与基于K-means聚类multi-SVDD方法相比,AIKCSVDD不需要事先指定分类数;在人工数据集和UCI数据集上的实验表明,在为multi-SVD
暂无评论