解决文本聚类集成问题的两个谱算法
聚类集成中的关键问题是如何根据不同的聚类器组合为最终的更好的聚类结果. 本文引入谱聚类思想解决文本聚类<br />集成问题, 然而谱聚类算法需要计算大规模矩阵的特征值分解问题来获得文本的低维嵌入, 并用于后续聚类. 本文首先提出了<br />一个集成算法, 该算法使用代数变换将大规模矩阵的特征值分解问题转化为等价的奇异值分解问题, 并继续转化为规模更小<br />的特征值分解问题; 然后进一步研究了谱聚类算法的特性, 提出了另一个集成算法, 该算法通过求解超边的低维嵌入, 间接得<br />到文本的低维嵌入. 在 TREC 和 Reuters 文
暂无评论