在本模块中,将使用Python中的TensorFlow平台探索和实现神经网络。 讨论了计算神经元的背景和历史,以及应用于深度学习的神经网络的当前实现。 讨论了不同神经网络的主要成本和收益,并将这些成本与传统的机器学习分类和回归模型进行比较。 此外,还练习了跨许多不同的数据集(包括图像,自然语言和数字数据集)实施神经网络和深度神经网络。 最后,学习了如何存储和检索经过训练的模型以用于更强大的用途。 统计分析概述: 在此模块挑战中,将执行数据分析以帮助基金会(字母汤)预测在何处进行投资。 使用了机器学习和神经网络的知识。 提供的数据集中的特征用于创建一个二进制分类器,该分类器能够预测如果由Alp