为了解决1范数约束下的稀疏表示判别信息不足的问题,该文提出基于局部敏感核稀疏表示的视频目标跟踪算法。为了提高目标的线性可分性,首先将候选目标的SIFT特征通过高斯核函数映射到高维核空间,然后在高维核空间中求解局部敏感约束下的核稀疏表示,将核稀疏表示经过多尺度最大值池化得到候选目标的表示,最后将候选目标的表示代入在线的SVMs,选择分类器得分最大的候选目标作为目标的跟踪位置。实验结果表明,由于利用了核稀疏表示下数据的局部性信息,使得算法的鲁棒性得到一定程度的提高。