We present a sparse Bayesian reconstruction method based on multiple types of a priori information for multispectral bioluminescence tomography (BLT). In the Bayesian approach, five kinds of a priori information are incorporated, reducing the ill-posedness of BLT. Specifically, source sparsity characteristic is considered to promote reconstruction results. Considering the computational burden in the multispectral case, a series of strategies is adopted to improve computational efficiency, such a