由于计算机内存资源限制,分类器组合的有效性及最优性选择是机器学习领域的主要研究内容。经典的集成分类算法在处理小数据集时,拥有较高的分类准确性,但面对大量数据时,由于多基分类器学习、分类共用1台计算机资源,导致运算效率较低,这显然不适合处理当今的海量数据。针对已有集成分类算法只适合作用于小规模数据集的缺点,剖析了集成分类器的特性,采用基于聚合方式的集成分类器和云计算的MapReduce技术设计了并行集成分类算法(EMapReduce),达到并行处理大规模数据的目的。并在Amazon计算集群上模拟实验,实验结果表明该算法具有一定的高效性和可行性。