使用机器学习和深度学习并结合知识图嵌入的财务报表中的股票价格预测 几十年来,能够预测单个公司的股价一直是投资者的目标。 公司的股价受许多因素影响。 这些因素包括新闻,当前的政治气候和经济状况。 但是,鉴于成功进行预测可能获得的回报,许多人都试图开发模型来精确地做到这一点。 与股票价格预测有关的许多文献都集中在趋势(价格上涨或下跌)和价格(例如几天之内或两天之间的价格变化)的短期预测中。 该项目研究了机器学习,深度学习和知识图嵌入的使用,以发现在美国证券交易所上市的公司的财务业绩与其股价之间的关系。 具体来说,这项工作涉及尝试从财务报表中生成价格预测,以及预测每个公司的年度10K报告之间单个公司股票价格变化的趋势和幅度。 这项工作为投资者提供了财务决策支持,也导致了新数据集的产生,其他研究人员可能会进一步探索。 存储库的结构如下: “数据”文件夹包含针对所研究的每个研究问题的预处理数据