基于多尺度与多重残差网络的图像超分辨率重建
misaiya
4
0
PDF
2021-04-04 08:04:49
近几年虽然基于神经网络的超分辨率重建技术发展迅速,但仍然存在不易找到合适尺寸的卷积核、网络层数过深导致收敛缓慢等缺点。为此,提出了一种能多尺度提取特征并包含多重残差的网络模型。低分辨率图像输入网络,通过多个多尺度残差模块,在每个模块进行多尺度特征提取、特征融合,构建残差输出到下一个模块,通过所有模块后再次构建残差,最终经过亚像素卷积输出高分辨率图像。实验结果表明,多重残差的引入使学习的收敛速度更快,多尺度能更好地提取图像特征,使图像在主观和客观度量上都优于其他主流算法。
暂无评论