deep active learning pytorch:一站式购买最新的深度主动学习方法 源码
PyTorch中用于图像分类的深度主动学习工具包 这是用编写的用于图像分类的深度主动学习的代码库。 我想强调的是,该工具包只是最初由Prateek Munjal等人通过电子邮件与我共享的工具包的轻量级衍生产品。 论文“使用神经网络实现鲁棒和可再现的主动学习”的作者,请。 介绍 该存储库的目标是为深度主动学习提供一个简单而灵活的代码库。 它旨在支持快速实施和评估研究思路。 我们还提供了大量基准结果(即将推出)。 该代码库当前仅支持单机单gpu培训。 我们将很快将其扩展到由PyTorch分布式软件包提供支持的单机多GPU培训。 使用工具箱 有关简要的安装说明和基本用法示例,请参见 。 支持的主动学习方法 不确定性抽样 最不信任 最低保证金 最大熵 深度贝叶斯主动学习(DBAL)[1] 贝叶斯主动学习的分歧(BALD)[1] 多样性抽样 核心组(贪婪)[2] 变式对抗主动学习(VAAL)
文件列表
deep-active-learning-pytorch-main.zip
(预估有个56文件)
deep-active-learning-pytorch-main
pycls
utils
timer.py
979B
io.py
3KB
net.py
3KB
checkpoint.py
4KB
logging.py
3KB
distributed.py
5KB
meters.py
8KB
暂无评论