multimodal dataset:用于生成多模式CAFA基准测试集的代码和最少数据 源码
多峰数据集 代码,用于生成多模式基准测试集的最少数据。 1.选择样本进行培训,测试,验证 阈值序列同一性,以避免基于同源性的过度拟合。 为此,从获得.fasta格式的一组带注释的序列,并将其聚类(使用cdhit ),直到某个序列同一性阈值(例如40%)。 聚类后,由每个聚类中的质心组成的蛋白质集即为完整数据集。 这些蛋白质在.fasta的输出.fasta文件中cdhit 。 将该数据集适当地划分为训练集,验证集和保持集。 请记住,如果保持集是预先确定的,则必须删除其聚类中包含测试集成员的所有质心。 这可以通过群集文件转换成一个相当容易做到.json使用scripts/convert_clstr_to_json.py并打开一个交互式python与重心会议.fasta文件和.json列表文件,并测试集列表。 2.下载结构,提取坐标 中的序列中只有一个子集在具有关联的结构。 可以通过将U
文件列表
multimodal-dataset-master.zip
(预估有个21文件)
multimodal-dataset-master
.gitignore
66B
README.md
4KB
.gitmodules
113B
scripts
useful_scripts
read_gaf.py
5KB
download_swissmodel.py
1KB
align_fasta_to_ids.py
1KB
form_mkdmap_commands.py
1KB
暂无评论