针对传统黎曼流形上判别分析算法仅考虑了带标签数据统计信息,忽略了无标签数据的问题,基于图正则化思想,提出一个新颖的基于黎曼流形框架上半监督判别分析算法,并将其应用于视觉分类任务中.该算法将非奇异协方差矩阵表示为黎曼流形上的点,引入JBLD(Jensen-Bregman LogDet divergence)度量黎曼流形上点与点之间相似性测度.首先将数据点映射到黎曼切空间中,获得数据向量化表示;其次采用有标签数据和无标签数据构建近邻图刻画黎曼切空间局部几何结构,使其作为正则化项添加到费舍尔测地线判别分析目标函数中;最后最小化目标函数获取最优变换矩阵,并在变换黎曼流形中进行分类.在3个视觉分类数据集...