暂无评论
蚁群算法在GIS最短路径求解中应用的初步研究,刘晓亮,,最短路径的求解是GIS应用中的主要问题之一。在传统的最短路径求解算法中,Dijkstra算法和启发式搜索算法-A*算法具有较好的效果,得到
蜂群算法在函数优化问题中的应用,王慧,,函数优化是算法应用中的基本问题,蜂群算法作为遗传算法与生物种群习性特征相结合的新算法,比较适合于此类问题的求解。本文首先
含约束条件的粒子群优化算法粒子群算法的改进及其在求解约束优化问题中的应用
蚁群算法是优化领域中新出现的一种仿生进化算法,该算法具有并行、正反馈和启发式搜索等特点,但搜索时间长、易陷入局部最优解是其突出缺点。旅行Agent问题是一类复杂的组合优化问题,目的在于解决移动Agen
多重序列比对是生物信息学特别是生物序列分析中一个重要的基本操作。提出求解多重序列比对问题的蚁群算法,利用人工蚂蚁逐个选择各个序列中的字符进行配对。在算法中,蚂蚁根据信息素、字符匹配得分以及位置偏差等信
粗糙集的属性约简是一个NP难问题,获得较为高效的算法是研究的主要目的。针对传统的粗糙集属性约简算法效率不高、速度不快的问题,提出基于相关系数和条件信息熵的属性约简算法,把决策表的非核属性约简过程转化为
描述了Job-shop调度问题,研究遗传算法和蚁群算法在解决Job-shop问题中的优点和不足,融合遗传算法和蚁群算法设计了遗传蚁群算法以求解Job-shop调度问题,并对算法进行了仿真实验,通过与遗
针对最小化最大完工时间的作业车间调度问题,提出了一种量子蚁群调度算法。该算法结合了量子计算中量子旋转门的量子信息和蚁群寻优的特点,通过作业车间调度问题的析取图表示,将原问题转换为求解析取图的关键路径,
萤火虫群优化算法是一种新兴的群体智能优化算法,目前在组合优化领域中的应用比较少。提出萤火虫群优化算法(Glowworm Swarm Optimization,GSO)求解越库调度问题的优化方法。越库调
用蚁群算法进行函数优化时,存在收敛速度慢且易于陷入局部最优解的问题。针对这一现状,提出了一种微粒群和蚂蚁算法相结合的混合连续优化算法,该算法引入微粒群优化操作进行全局搜索牵引,采用网格法进行细密度的蚂
暂无评论