一种基于学习的高维数据c 近似最近邻查询算法
针对高维数据近似最近邻查询,在过滤-验证框架下提出了一种基于学习的数据相关的c-近似最近邻查询算法.证明了数据经过随机投影之后,满足语义哈希技术所需的熵最大化准则.把经过随机投影的二进制数据作为数据的类标号,训练一组分类器用来预测查询的类标号.在此基础上计算查询与数据集中数据对象的海明距离.最后,在过滤后的候选数据集上计算查询的最近邻.与现有方法相比,该方法对空间需求更小,编码长度更短,效率更高.模拟数据集和真实数据集上的实验结果表明,该方法不仅能够提高查询效率,而且方便调控在查询质量和查询处理时间方面的平衡问题.
暂无评论