An analysis on recombination in multi objective evolutionary optimization
Evolutionary algorithms (EAs) are increasingly popular approaches to multi-objective optimization. One of their significant advantages is that they can directly optimize the Pareto front by evolving a population of solutions, where the recombination (also called crossover) operators are usually employed to reproduce new and potentially better solutions by mixing up solutions in the population. Recombination in multi-objective evolutionary algorithms is, however, mostly applied heuristically. In
暂无评论