针对管道系统历史数据缺乏、失效机理非线性的特点,选用具有良好自学习性、鲁棒性等特点的BP神经网络对管道失效状态进行预测。在对管道外表面涂层检测数据预处理的基础上,采用BP神经网络进行建模分析,通过样本的反复训练,得到预测集的相对误差最大为8.3%,预测结果比较理想。结果表明:用BP神经网络能够较好地预测管道的失效状态值,为管道的预防性维修提供理论依据。