提出了一种稀疏张量约束重建算法,该方法利用非局部相似的先验信息,将CT图像分割成一系列图像块组;采用张量的多维低秩分解方法, 将这一先验信息引入低剂量CT重建中,构造目标函数;通过重建图像更新和图像块组张量稀疏编码两个步骤,交替迭代求解目标函数。基于仿真数据和临床数据的实验结果验证了该算法的有效性,实验结果表明:与经典重建算法相比,所提算法在抑制噪声的同时,能更好地保持重建图像的细节,获得更高质量的图像。