暂无评论
基于小波变换和ICA特征提取的开关电流电路故障诊断
Oracle 故障诊断的经典资料,有助提高你的综合处理能力
Stochastic system troubleshooting
矿井提升机早期检测的核心技术就是故障检测,而故障引发的动态信号往往具有非平稳性且比较微弱。谐波小波具有很强的微弱信号提取能力,而且在频域具有"盒形"紧支特性和完美的滤波特性等优势,提出了基于谐波小波分
针对矿用齿轮箱振动信号的非平稳、非高斯等特点,提出了一种小波双谱分析的齿轮箱故障诊断方法。利用小波分解可将齿轮箱的振动信号分解到对应不同特征频率的频带,以提高频率分辨率和信噪比,然后有针对性地选择故障
提出一种基于小波包、能量分析和包络分析相结合的滚动轴承故障诊断方法。对实测振动信号进行小波包去噪,提取出有用的振动信号。利用小波包将去噪后的信号分解,求出分解后各频带的能量,根据各频带内能量分布,确定
针对矿井通风机故障信号的动态非平稳、能量微弱等特点,提出基于谐波小波变换的故障诊断方法,克服了传统诊断方法中存在的信号遗漏与频泄现象。以BDK-6-NO18轴流式通风机为研究对象,利用谐波小波变换的优
基于小波变换的煤矿井下水泵故障诊断
基于经验小波变换的滚动轴承故障诊断研究,徐明,谭继文,经验小波变换(EWT)作为一种新的自适应信号分解方法,通过在频域自适应构造带通滤波器组,构造正交小波函数,以提取具有紧支撑傅里�
为解决异步电机故障轴承振动信号易受噪音影响信噪比较小的缺点,提出了一种新的故障诊断方法。首先,采用小波分析方法对测得的原始信号进行去噪,并根据频率对原始信号进行频带划分;其次,用经验模式分解(EMD)
暂无评论