蛋白质折叠类型识别是蛋白质结构研究的重要内容. 以SCOP中的Globin-like折叠为研究对象,选择其中序列同一性小于25%的17个代表性蛋白质为训练集,采用机器和人工结合的办法进行结构比对,产生序列排比,经过训练得到了适合Globin-like折叠的概形隐马尔科夫模型(profileHMM)用于该折叠类型的识别. 以Astral1.65中的68057个结构域样本进行检验,识别敏感度为99.64%,特异性100%. 在折叠类型水平上,与Pfam和SUPERFAMILY单纯使用序列比对构建的HMM相比,所用模型由多于100个归为一个,仍然保持了很高的识别效果. 结果表明:对序列相似度很低但具有相同折叠类型的蛋白质,可以通过引入结构比对的方法建立统一的HMM模型,实现高准确率的折叠类型识别.