图片字幕 :man::laptop: 基于CNN和LSTM概念以及Flicker_8k和GUI数据集的图像标题深度学习模型 :mechanical_leg: 来自tkinter。 Convolutional Neural Network是一种深度学习算法,可以吸收输入图像,为图像中的各个方面/对象分配重要性,并能够区分彼此。 这种方法的流程结构就像 在分类的最后一部分中,我们使用了RNN的扩展版本,即LSTM ,它使用了存储的内存和结构看起来像 表格中的数据集 图像 标签 一个穿着粉红色裙子的孩子正在以入门方式爬上楼梯。 一个走进一幢木制建筑物的女孩。 一个小女孩爬进一个木制剧场。 一个小女孩爬上楼梯到她的游戏室。 一个小女孩穿着粉红色的连衣裙走进一个小木屋。 数据集和。 以下图像标签上的步骤 取材和清洁的标准方法 如果您没有强大的GPU,则从大型数据集中提取特征将花费大量时间。 我的机器大约需要6-7分钟。 您可以使用GPU机器在