为了提高人脸的识别率及其识别速度,提出了一种基于Gabor特征与投影字典对学习的人脸识别算法。由于Gabor特征对表情、光照和角度等变化具有较强的鲁棒性,首先提取人脸图像多方向.多尺度的Gabor局部特征,并将经主成分分析降维后的增广Gabor特征作为训练数据,代替原始的训练样本。然后,根据训练数据同时学习综合字典与分析字典,综合字典具有重构能力,分析字典可以快速求出系数矩阵。最后,根据各类别的重构误差进行分类,以达到人脸识别的目的。在扩展的YaleB、ORL和AR人脸数据库上的实验结果表明,提出的算法不仅具有较高的识别率,而且能够有效地提高识别速度。