sigular perturbation theory
The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible. A case in point is the analytical technique of singular perturbation theory which has a long history. In recent years it has been used in many different ways, and its importance has been enhanced by it having been used in various fields to derive sequences of asymptotic approximations, each with a higher order of accuracy than its predecessor. These approximations have, in turn, provided a better understanding of the subject and stimulated the development of new methods for the numerical solution of the higher order approximations. A typical example of this type is to be found in the general study of nonlinear wave propagation phenomena as typified by the study of water waves.
暂无评论