非局部平均滤波去噪方法和基于广义非局部平均的小波域去噪方法都会在不同程度上损失图像细节信息.为了在去除图像噪声的同时更好地保留图像细节,文中提出了一种基于分水岭分割和广义非局部平均的小波去噪方法.首先对含有噪声的图像进行基于梯度的分水岭分割并保留分水岭脊线;然后对含有噪声的图像进行多维度小波分解,对分解的每一层系数估计尺度系数和形状系数,构造每层小波子系数的广义高斯模型,对每层细节子带信息分别在水平、垂直、对角线3个方向应用基于广义高斯模型的非局部平均滤波;最后用含噪图像中与分水岭脊线相对应的像素点替换小波重构后图像的对应像素点.仿真结果表明,该方法与基于广义非局部平局的小波分析去噪法相比能获