针对量子遗传算法(QGA)易陷入局部极值、具有早熟收敛等问题,分析了QGA的流程,从全局搜索和局部搜索两个层面探讨了QGA的改进策略,提出了一种新的算法。该算法利用混沌运动的遍历性和随机性进行全局搜索,同时利用梯度信息对QGA的量子更新过程环节进行优化。典型函数测试分析表明,该方法的综合性能明显优于量子遗传算法及遗传算法。