为解决扩展卡尔曼滤波算法(EKF)在处理角测量跟踪问题时对复杂非线性状态估计收敛速度慢、估计精度低的问题,引入一种平方根容积卡尔曼滤波算法(SRCKF)。SRCKF是一类sigma点滤波方法,基于容积原则的数值积分方法计算非线性随机函数的均值与协方差,避免了EKF中Jacobian矩阵的计算,有效提高了计算效率。另外,与一般容积卡尔曼滤波算法相比,SRCKF确保了状态协方差矩阵的对称性与半正定性,有效改进了数值精度和鲁棒性。将SRCKF应用于角测量跟踪系统中,仿真结果表明,SRCKF、Unscented卡尔曼滤波(UKF)滤波精度较传统EKF有较大提高,同时,与UKF相比,SRCKF能以较快的运行效率获得较好的滤波效果。