暂无评论
针对基于传统神经网络的变压器故障识别诊断方法存在网络收敛慢、易陷入局部极小点和网络参数难确定的缺点,提出了一种基于极限学习机的电力变压器故障快速识别方法。该方法以变压器油中用于故障类型分析的5种主要溶
极限学习机(ELM)因其高效的训练方式被广泛应用于分类回归,然而不同的输入权值在很大程度上会影响其学习性能。为了进一步提高ELM的学习性能,针对ELM的输入权值进行了研究,充分利用图像局部感知的稀疏性
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,
极限学习机ELM不同于传统的神经网络学习算法(如BP算法),是一种高效的单隐层前馈神经网络(SLFNs)学习算法。将极限学习机引入到中文网页分类任务中。对中文网页进行预处理,提取其特性信息,从而形成网
Python implementation of online sequential extreme learning machine OS-ELM
针对采空区煤炭自然发火的预测问题,从温度、标志气体浓度以及钻孔参数3个方面选取了8个相关因素,利用Logistic回归分析从中提取出5个相对重要的因素作为预测模型的输入,运用极限学习机算法进行预测,并
针对经典智能算法用于滑坡位移预测时存在的网络结构参数选取复杂、易陷入局部极小等缺陷,提出了基于改进极限学习机ELM(Extreme Learning Machine)的滑坡位移预测模型。在滑坡变形位移
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,
摘要:内核极限学习机(KELM)通过将低维空间中的线性不可分离数据转换为线性可分离的数据,从而增强了ExtremeLearning Machine(ELM)的鲁棒性。 然而,ELM的内部功率参数是随机
针对模式分类问题, 提出一种具有磁场效应的??- 间隔核学习机(??-MKLM), 旨在寻求一个具有磁场效应的 最优超平面, 受其吸引, 使得一类模式离该平面的距离尽可能的小, 而另一类模式受其排斥,
暂无评论