从地铁隧道三维点云数据中分割出物体的点云是自动化检测地铁隧道病害及重建地铁隧道三维模型的关键步骤。由于某自动化检测系统的结构特点,使用其采集的三维点云数据计算点云法线向量和曲率时准确度不高,导致一些常用的三维点云分割算法,比如一种改进的区域生长分割法不适用于该检测系统采集的点云数据。为了分割某自动化检测系统采集的三维点云数据,设计并实现了一种基于密度聚类的分割算法。这种算法避免使用不准确的法线向量和曲率,克服了某自动化检测系统的缺点,并用实际三维点云数据对比了区域生长分割法和基于密度聚类分割算法的分割结果。