playground:一个Streamlit应用程序可直接从浏览器玩机器学习模型 源码
操场 Playground是一个简化的应用程序,可让您修改浏览器中的机器学习模型。 这个程序的灵感来自于伟大的Tensorflow。 唯一的区别是它解决了经典的机器学习模型 演示版 就 它是如何工作的 ? :card_index_dividers: 您可以从预定义列表中选择并配置数据集。 您可以设置: 样品数 火车上的噪音和测试数据 :gear: 您选择一个模型,并为其设置超参数。 您可以从以下模型中选择模型:逻辑回归,决策树,随机森林,梯度提升,神经网络,朴素贝叶斯,KNN和SVM :chart_decreasing: 该应用程序会自动显示以下结果: 模型在火车和测试数据上的决策边界 训练和测试数据的性能指标(准确性和F1分数) 模型训练所需的时间 生成的python脚本,用于基于数据集定义和模型超参数来重现模型 对于每种模型,游乐场都提供了指向官方文档的链接以及提示列表。 加分点:该应用程序还提供通过添加多项式特征来执行特征工程的功能。 事实证明,
文件列表
playground-main.zip
(预估有个32文件)
playground-main
css
style.css
243B
.gitignore
66B
app.py
3KB
README.md
5KB
utils
functions.py
6KB
__init__.py
0B
ui.py
6KB
暂无评论