暂无评论
为了提高中心差分卡尔曼粒子滤波(CDKFPF)算法跟踪时的估计精度,提出了一种基于迭代测量更新CDKF的粒子滤波(ICDKFPF)新算法。该算法利用迭代中心差分卡尔曼滤波的最大后验概率估计产生粒子滤波
描述图像匹配过程,使用SIFT算法完成图像的精确匹配。
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,
实现将一个有限自动机极小化是一个困难的问题。通过零状态考虑了一类(r,t)阶存贮拟线性有限自动机极小化的判断方法,给出了极小线性有限自动机的描述,最后给出了基于系数矩阵的极小化算法实现。
针对实际应用中诸多数据集标签部分缺失、无定位标注等问题,提出了基于多尺度特征卷积神经网络的弱监督定位算法。其核心思想是利用神经网络分层的特性,在多层卷积层上使用梯度加权类激活映射,生成梯度金字塔模型,
Research on Multi-objective Particle Swarm Optimization Algorithm
为提高粒子群优化算法在优化问题中的效率,提出了并行粒子群优化算法(SLPSO)。其基本思想是并行机制解空间压缩分层搜索。主要工作包括:搜索空间划分为n个区,由n个子群并行搜索,将搜索结果最好的作为指定
针对标准粒子群优化算法不易跳出局部寻优、搜索精度低等缺陷,提出了等高随机替换策略,运用简化粒子群算法进行更新,加快了粒子寻优能力;并且对适应值最差的一部分粒子,采用了最优随机反方向搜索策略,保证了算法
为了更快地将肤色区域从图像中分割出来,在二维Ostu方法的基础上,提出了一种将积分图和粒子群优化相结合用于寻找最优分割阈值点的新方法。该方法通过对经过颜色补偿后的图片在YCbCr颜色空间中用二维高斯肤
以最小化完工时间为目标构建Petri网模型,并基于该模型将混沌原理和粒子群算法相结合,提出了一种基于Logistic映射的混沌粒子群优化(CPSO)算法。仿真实验结果表明,该算法能跳出局部最优,增强了
暂无评论