什么是同步整流?
例如,在同步降压转换器中,通过用两个低端的MOSFET来替换肖特基二极管可以提高效率(图1b)。这两个MOSFET必须以互补的模式驱动,在它们的导通间隙之间有一个很小的死区时间(dead TIme),以避免同时导通。同步FET工作在第三象限,因为电流从源极流到漏极。与之对应的非同步转换器相比,同步降压转换器总是工作在连续导通,即使在空载的情况下也是。 在死区时间内,电感电流流过低端FET的体二极管(body diode)。这个体二极管通常具有非常慢的反向恢复特性,会降低转换器的效率。可以与低端FET并行放置一个肖特基二极管以对体二极管实现旁路,避免它影响到转换器的性能。增加的肖特基二极管可以比非同步降压转换器中的二极管低很多的额定电流,因为它只在两个FET都关断时的较短的死区时间(通常低于开关周期的百分之几)内导通。
同步整流的好处
在高性能、高功率的转换器中使用SR的好处是可以获得更高的效率、更低的功耗、更佳的热性能,以及当同步FET并行连接时固有的理想电流共享特点,而且尽管采用自动组装工艺(更高的可靠性)但还是可提高制造良率。如上面提到的那样,若干个MOSFET可以并行连接来应对更高的输出电流。 因为在这种情况下有效的RDS(ON)与并行连接的器件数量成反比,因此降低了导通损耗。同样,RDS(ON)具有正的温度系数,因此FET将等量分享电流,有助于优化在SR器件之间的热分布,这将提高器件和PCB
散热的能力,直接改善设计的热性能。SR带来的其他潜在的好处包括更小的外形尺寸、开放的框架结构、更高的环境工作温度,以及更高的功率密度。
暂无评论