电源技术论文锂离子电池的发展趋势摘要:介绍了将电源模块并联,并构成冗余结构进行供电的好处,讲述了几种传统的并联均流电路,讨论了各种方式下的工作过程及优缺点,并对均流技术的发展做了展望。关键词:并联;冗余;均流1概述随着电力电子技术的发展,各种电子装置对电源功率的要求越来越高,对电流的要求也越来越大,但受构成电源模块的半导体功率器件,磁性材料等自身性能的影响,单个开关电源模块的输出参数(如电压、电流、功率)往往不能满足要求。若采用多个电源模块并联供电,如图1所示,就不但可以提供所需电流,而且还可以形成N+m冗余结构,提高了系统的稳定性,可谓一举两得。但是,在电源模块并联运行时,由于各个模块参数的分散性,使其输出的电流不可能完全一样,导致有些模块负荷过重,有些模块过轻。这将使系统的稳定性降低,会给我们的生产和生活带来严重的后果,而且电源模块自身的寿命也会大大缩短。国外有资料表明,电子元器件在工作环境温度超过50°C时的寿命是在常温(25°C)时的1/6。因此,使各并联电源模块的输出电流平均分配,是提高并联电源系统稳定性的一个必须解决的问题。本文从均流电路的拓扑结构出发,介绍几种传统的并联均流方案,对于其他均流方案(比如按热应力自动均流法),暂不做讨论。对于文中提到的每一种均流方法,都做了详细的介绍,并结合简单电路图,讲述其工作原理及优缺点[1][2][3][4]。在文章的最后部分,对并联均流的发展做了简单的展望。2N+m冗余结构的好处采用N+m冗余结构运行,可以提高系统稳定性。N+m冗余结构,是指N+m个电源模块一起给系统供电。这里N表示正常工作时电源模块的个数,m表示冗余模块个数。m值越大,系统工作可靠性越高,但是系统成本也会相应增加。在正常的工作情况下,由N个模块供电。当其中