暂无评论
密歇根大学关于生成式对抗网络的28页综述。生成性对抗网络是近年来研究的热点。GANs自2014年以来得到了广泛的研究,并提出了大量的算法。然而,很少有全面的研究解释不同甘氨酸变体之间的联系,以及它们是
WGAN-GP是一种改进的生成对抗网络方法,通过在损失函数中引入梯度惩罚项,有效解决了原始WGAN中的训练不稳定和模式崩溃的问题。本文详细介绍了WGAN-GP的原理和算法,并通过对比实验验证了其在生成
首先介绍激光链路通信的优势,然后介绍基于生成对抗网络(GAN)的端到端通信学习系统,提高了通信系统的实时性与全局优化性。针对传统GAN在训练与应用中模式坍塌和训练不稳定的问题,引入Wasserstei
尽管生成式对抗网络(GAN)的历史并不长,但它已被广泛地研究和用于各种任务,包括其最初的目的,即合成样品的生成。然而,将GAN用于具有不同神经网络结构的不同数据类型,由于其在训练方面的局限性,使得模型
Pytorch实现WGAN用于动漫头像生成
针对深度学习算法在脑肿瘤分割中存在标记数据不足的问题,提出了一种基于条件生成对抗网络(CGAN)的低级别胶质瘤(LGG)磁共振(MR)图像自动分割方法。首先,使用原始数据集训练CGAN并生成LGG图像
本文介绍基于三通道条件生成对抗网络的图像着色算法研究,通过对代天.caj文件进行分析,本文提出了改进的算法,实验效果表明,该算法能够在色彩还原和保持轮廓的同时提高着色质量。同时,本文深入分析了该算法的
ST-GAN: 用于图像合成的空间变换生成对抗网络 (CVPR 2018)
StudioGAN是一个Pytorch库,为有条件/无条件图像生成提供了代表性的生成对抗网络(GAN)的实现。 StudioGAN旨在为现代GAN提供一个完全相同的场所,以便机器学习研究人员可以轻松比
Cyclegan生成式对抗网络,使用tensorflow快速实战-附件资源
暂无评论