暂无评论
动手学深度学习:梯度消失、梯度爆炸 内容摘自伯禹人工智能AI公益课程 目录: 梯度消失和梯度爆炸的基本概念 考虑到环境因素的其他问题 Kaggle房价预测# 梯度消失、梯度爆炸以及Kaggle房价预测
pytorch版循环神经网络实现 import torch import torch.nn as nn import time import math import sys def load_data
本节课内容批量归一化和残差网络、凸优化、梯度下降 一、批量归一化和残差网络 1.批量归一化 对输入的标准化(浅层模型):处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数
卷积神经网络 典型的卷积神经网络由卷积层、池化层、全连接层构成。 卷积层 卷积:在原始的输入上进行特征的提取。特征提取简言之就是,在原始输入上一个小区域一个小区域进行特征的提取。 直观的理解卷积 以上
节选自“ElitesAI·动手学深度学习PyTorch版” Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq
《动手学深度学习v2》.pdf
我们使用的热狗数据集(点击下载)是从网上抓取的,它含有1400张包含热狗的正类图像,和同样多包含其他⻝品的负类图像。各类的1000张图像被用于训练,其余则用于测试。
机器翻译和注意力机制 机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。 步骤 1、读
本节课内容,卷积神经网络基础、LeNet、卷积神经网络进阶 一、卷积神经网络基础 二维互相关运算:二维互相关运算的输入是一个二维输入数组和一个二维核数组,输出也是一个二维数组,其中核数组通常称为卷积核
本节课主要内容为机器翻译及相关技术、注意力机制与Seq2seq模型、Transformer 一、机器翻译及相关技术 机器翻译:将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神
暂无评论