Spiking neural networks have shown great potential in mimicking the brain's computational abilities. However, training these networks has been a challenge due to the complex temporal dynamics involved. This paper introduces a novel technique called Patio-Temporal Backpropagation that simplifies the training process by incorporating a simplified temporal model. By using this method, high-performance spiking neural networks can be trained more efficiently.
Patio Temporal Backpropagation Simplifies Spiking Neural.Network Training
用户评论
推荐下载
-
Neural Network Methods for Natural Language Processing
Neural Network Methods for Natural Language Processing Goldberg 2017 英文版
26 2019-04-14 -
neural network_based face detection
matlab人脸识别,基于神经网装的人脸识别,英文论文
45 2019-04-05 -
Deep Neural Network Application Image Classification
DeepNeuralNetworkApplication-ImageClassification
37 2019-07-27 -
CNN_Convolutional neural network class
CNN-Convolutionalneuralnetwork卷积神经网络程序
24 2019-07-06 -
Neural Network approach for miRNA target prediction
NeuralNetworkapproachformiRNAtargetprediction
34 2019-07-09 -
Human Parsing with Contextualized Convolutional Neural Network
ICCV2015年的论文《HumanParsingwithContextualizedConvolutionalNeuralNetwork》的PPT(我制作的)和相关文献。
28 2019-06-01 -
A Convolutional Neural Network Cascade for Face Detection
AConvolutionalNeuralNetworkCascadeforFaceDetection
38 2019-06-22 -
neural network methods for natural language processing
neuralnetworkmethodsfornaturallanguageprocessing,作者YoavGoldberg,2017cmu自然语言处理推荐教材
35 2019-06-22 -
The Relevance of the Time Domain to Neural Network Models
这是关于神经网络的电子书,高清,最新版本,经典著作,英文版
37 2019-12-31 -
Neural Network and Deep Learning.zip
⼀个以原理为导向的⽅法本书⼀个坚定的信念,是让读者更好地去深刻理解神经⽹络和深度学习,⽽不是像⼀张冗⻓的洗⾐单⼀样模糊地列出⼀堆想法。如果你很好理解了核⼼理念,你就可以很快地理解其他新的推论。⽤编程语
57 2019-07-23
暂无评论