针对现有井下人员目标检测方法因网络较深、计算量庞大而不能达到实时检测效果的问题,提出了一种基于参数轻量化的井下人体实时检测算法。采用深度可分离卷积模块倒置残差模块构建轻量级特征提取网络:通过深度可分离卷积压缩参数量和运算量,提升特征提取网络的运算速度;倒置残差模块通过更高维度的张量来提取足够多的信息,保证特征提取网络的精确度。结合轻量级特征提取网络和SSD多尺度检测方法建立井下人体实时检测模型,该模型在轻量级倒置残差特征提取网络的基本结构上增添传统卷积层至27层进行卷积操作,其中6层特征图被抽取进行多尺度预测。测试结果表明,该模型的大小为18 MB,帧率约为35帧/s,性能优于常用的VGG16+Faster R-CNN模型和VGG16+多尺度检测模型。为适应井下特定环境的目标检测需求,设计了基于Faster R-CNN的人体数据半自动标注方法,可显著减少人工工作量,提高井下人体检测精度。利用矿工服装颜色信息对检测结果框进行二次筛选,剔除将背景检测为人体的误检框。测试结果表明,该算法实现了采煤工作面人员实时定位检测及框选,精度达92.86%,召回率为98.11%,有效解决了井下人员漏检问题。