准确预测煤矿冲击地压灾害,提出一种基于粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)预测方法,即冲击地压分级预测的PSO-LSSVM方法。该方法综合考虑煤矿开采深度地质构造煤的坚固性系数最大主应力煤层倾角变化煤厚变化顶板岩层厚度开采工艺顶板和底板岩石强度共10项指标因素,构建冲击地压预测指标体系。利用PSO搜索方法对LSSVM模型的核参数σ和惩罚因子f快速寻优,再将优化参数输入LSSVM模型中,构建基于PSO-LSSVM方法的冲击地压危险性分级预测方法,并进行工作面实例预测。研究结果表明:与其他预测方法相比,PSO-LSSVM方法具有计算效率高准确性高操作简便等特点,现场应用效果良好。