为提高复杂噪声环境下语音信号端点检测的准确率,提出一种基于梅尔频谱倒谱系数(MFCC)距离的多维特征语音信号端点检测算法。通过计算语音信号的MFCC距离,结合短时能量短时过零率对特征距离进行修正,并更新其阈值,建立自适应噪声模型,实现复杂噪声中语音信号端点的准确检测。实验结果表明,与基于双限能量和基于倒谱距离的两种经典检测算法相比,在计算效率相同的条件下,该算法的检测准确率更高。