积分已是最低,不用找别的了。本书对机器学习的定义和应用实例进行了介绍,涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、聚类、非参数方法、决策树、线性判别式、多层感知器、局部模型、隐马尔可夫模型、分类算法评估和比较、组合多学习器以及增强学习等。最新的第2版增加了三章内容,分别是核机器、图模型、贝叶斯估计,扩展了统计测试的内容,教学案例可以从本书配套网站下载。