基于SOM算法的中文文本聚类 文本挖掘是数据挖掘领域中一个热门的研究方向。在文本挖掘领域中,文本聚类技术有助于缩小数据搜索空间,提高查询精度。作为一种无监督的机器学习方法,文本聚 类技术己经成为对文本信息进行有效地组织、摘要和导航的重要手段,为越来越多的研究人员所关注。可以说,文本聚类的研究具有重要的理论意义和实际使用价值。自组
神经网络在曲线拟合中的应用 人工神经网络的发展已有近六十年的历史,当前神经网络研究在理论、应用方面都取得了令人瞩目的进展。前向多层神经网络被证明具有较强的功能,误差反传训练(E达CkPro环堪ation,BP)算法是这种网络的典型算法,BP网络模型已成功地用于信号处理、文本及语音变换和数据处理,成为广泛使用的网络模型之一。曲线