Ta上传的资源 (0)

lee background corpus 是一个小型的英语语料,用于演示 word2vec 模型的 demo,以熟悉什么是词向量模型

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分

ARL 框架的名字来源于 PAddlepaddle Reinfocement Learning,是一款基于百度 PaddlePaddle 打造的深度强化学习框架。PARL 与现有强化学习工具和平台相比,具有更高的可扩展性、可复现性和可复用性,支持大规模并行和稀疏特征,能够快速 对工业级应用案例的验证

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分

Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分