Ta上传的资源 (0)

用三种优化方法实现logistic回归的应用,根据学生的两门成绩,判断是否能录取。采用梯度下降法(GD),随机梯度下降法(SGD)和牛顿法(Newton)三种优化方法,绘制动态迭代图,可以动态观察决策结果以及损失函数的收敛过程。数据集和三种算法的代码均打包在一起,采用Jupyter Notebook

主要针对控制图时间序列数据集的聚类任务,使用了基于划分的(K-Means)、基于层次的(AGNES)、基于密度的(DBSCAN)以及基于图的(spectral clustering)聚类方法,最后可视化结果,用Jupyter Notebook编写(python),四种聚类算法和数据集均打包在一起。