基于LDA特征扩展的短文本分类_吕超镇 针对中文短文本篇幅较短、特征稀疏性等特征,提出了一种基于隐含狄利克雷分布模型的特征扩展的短文本分类方法。在短文本原始特征的基础上,利用LDA主题模型对短文本进行预测,得到对应的主题分布,把主题中的词作为短文本的部分特征,并扩充到原短文本的特征中去,最后利用SVM分类方法进行短文本的分类。实验表明,该
基于LDA主题模型的短文本分类方法 针对短文本的特征稀疏性和上下文依赖性两个问题,提出一种基于隐含狄列克雷分配模型的短文本分类方法。利用模型生成的主题,一方面区分相同词的上下文,降低权重;另一方面关联不同词以减少稀疏性,增加权重。采用K近邻方法对自动抓取的网易页面标题数据进行分类,实验表明新方法在分类性能上比传统的向量空间模型和基于主
基于LDA高频词扩展的中文短文本分类胡勇军 针对短文本特征稀疏、噪声大等特点,提出一种基于 LDA 高频词扩展的方法,通过抽取每个类别的高频词作为向量空间模型的特征空间,用 TF-IDF 方法将短文本表示成向量,再利用 LDA 得到每个文本的隐主题特征,将 概率大于某一阈值的隐主题对应的高频词扩展到文本中,以降低短文本的噪声和稀疏性影响。实验