Ta上传的资源 (0)

本书介绍了实用机器学习的工作流程,主要从实用角度进行了描述,没有数学公式和推导。本书涵盖了数据收集与处理、模型构建、评价和优化、特征的识别、提取和选择技术、高级特征工程、数据可视化技术以及模型的部署和安装,结合3个真实案例全面、详细地介绍了整个机器学习流程。后,还介绍了机器学习流程的扩展和大数据应用

无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;*后介绍了无监督学习在基因选择