Ta上传的资源 (0)

决策树算法的研究与改进,决策树是数据挖掘中重要的分类方法,本文在研究和比较几种经典的决策树算法基础上,提出了一种改进的决策树算法:基于度量的决策树(MBDT).这种决策树实际上是把线性分类器和决策树结合在一起.

统计学习理论是针对小样本情况研究统计学习规律的理论,是传统统计学的重要发展和补充,为研究有限样本情况下机器学习的理论和方法提供了理论框架,其核心思想是通过控制学习机器的容量实现对推广能力的控制。在这一理论中发展出的支持向量机方法是一种新的通用学习机器,较以往方法表现出很多理论和实践上的优势。本书是该